Post

Citation

Citation

Theoretical Methods

  • [GFN-FF]

  • GFN2-xTB

    1
    
    Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—An Accurate and Broadly   Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with   Multipole Electrostatics and Density-Dependent Dispersion Contributions J.   Chem. Theory Comput. 2019, 15 (3), 1652–1671.
    
  • B3LYP
    1
    
    A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” J. Chem. Phys., 98 (1993) 5648-52.
    
  • ωB97XD
    1
    
    J.-D. Chai and M. Head-Gordon, “Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections,” Phys. Chem. Chem. Phys., 10 (2008) 6615-20. 
    
  • DSD-PBEP86
  • ωB2GP-PLYP
    1
    
    Casanova-Páez, M.; Dardis, M. B.; Goerigk, L. ωB2PLYP and ωB2GPPLYP: The First Two Double-Hybrid Density Functionals with Long-Range Correction Optimized for Excitation Energies. J. Chem. Theory Comput. 2019, 15 (9), 4735–4744.
    
  • RSX-QIDH
    1
    
    Brémond, É.; Savarese, M.; Pérez-Jiménez, Á. J.; Sancho-García, J. C.; Adamo, C. Range-Separated Double-Hybrid Functional from Nonempirical Constraints. J. Chem. Theory Comput. 2018, 14 (8), 4052–4062.
    
  • D3
    1
    
    Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104.
    
  • BJ
    1
    
    Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32 (7), 1456–1465.
    

Basis Sets

  • 6-31G**
    1
    2
    
    (1) Hariharan, P. C.; Pople, J. A. Accuracy of AH Nequilibrium Geometries by Single Determinant Molecular Orbital Theory. Molecular Physics 1974, 27 (1), 209–214. 
    (2) Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Laham, Al, M. A.; Shirley, W. A.; Mantzaris, J. A Complete Basis Set Model Chemistry. I. the Total Energies of Closed‐Shell Atoms and Hydrides of the First‐Row Elements. J. Chem. Phys. 1988, 89 (4), 2193–2218.
    
  • 6-311g**
    1
    
    Krishnan, R., Binkley, J. S., Seeger, R., Pople, J. A.Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650-654 (1980)
    
  • def2 series
    1
    2
    
    F. Weigend, “Accurate Coulomb-fitting basis sets for H to Rn,” Phys. Chem. Chem. Phys., 8 (2006) 1057-65. 
    F. Weigend and R. Ahlrichs, “Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy,” Phys. Chem. Chem. Phys., 7 (2005) 3297-305.
    
  • def series
    1
    2
    
    A. Schaefer, H. Horn, and R. Ahlrichs, “Fully optimized contracted Gaussian-basis sets for atoms Li to Kr,” J. Chem. Phys., 97 (1992) 2571-77. 
    A. Schaefer, C. Huber, and R. Ahlrichs, “Fully optimized contracted Gaussian-basis sets of triple zeta valence quality for atoms Li to Kr,” J. Chem. Phys., 100 (1994) 5829-35. 
    

To be added

  • def2/J
    1
    
    Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8 (9), 1057–1065.
    
  • def2TZVP/C
    1
    
    Hellweg, A., Hättig, C., Höfener, S. et al. Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn. Theor Chem Acc 117, 587–597 (2007).
    

Other

  • IGMH
    1
    
    Tian Lu, Qinxue Chen, Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems, J. Comput. Chem., 43, 539-555 (2022)
    
  • RDG
    1
    
    Johnson, E.R., Keinan, S., Mori-Sánchez, P., et al., 2010. Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498–6506. 
    
  • RIJCOSX
    1
    2
    3
    4
    
    (1) Neese, F.;  Wennmohs, F.;  Hansen, A.; Becker, U., Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange. Chem. Phys. 2009, 356 (1), 98-109.
    (2) Izsák, R.; Neese, F., An overlap fitted chain of spheres exchange method. J. Chem. Phys. 2011, 135 (14), 144105.
    (3) Izsák, R.;  Neese, F.; Klopper, W., Robust fitting techniques in the chain of spheres approximation to the Fock exchange: The role of the complementary space. J. Chem. Phys. 2013, 139 (9), 094111.
    (4) Helmich-Paris, B.;  de Souza, B.;  Neese, F.; Izsák, R., An improved chain of spheres for exchange algorithm. J. Chem. Phys. 2021, 155 (10), 104109.
    

Software

  • Gaussian
    1
    
    Gaussian 16, Revision A.03,M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
    
  • ORCA
    1
    2
    
    (1) Neese F. Software update: The ORCA program system—Version 5.0. WIREs Comput Mol Sci. 2022; 12:e1606. 
    (2) Neese,F.; Wennmohs,F.; Becker,U.; Riplinger,C. "The ORCA quantum chemistry program package." J. Chem. Phys. 14 June 2020; 152 (22): 224108.
    
  • xtb
    1
    
    Bannwarth C, Caldeweyher E, Ehlert S, et al. Extended tight-binding quantum chemistry methods. WIREs Comput Mol Sci. 2021; 11:e1493. 
    
  • molclus
    1
    
    Tian, L. Molclus Program, Version 1.12.2023; Beijing Kein Research Center for Natural Science: Beijing, China, 2018. http://www.keinsci.com/research/molclus.html (accessed: 2024–07–04).
    
  • Multiwfn
    1
    2
    
    (1) Lu, T.; Chen, F., Multiwfn: a Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580-592.
    (2) Tian Lu, J. Chem. Phys., 161, 082503 (2024)
    
  • VMD
    1
    
    Humphrey, W.; Dalke , A.; Schulten, K., VMD: Visual Molecular Dynamics. Journal of molecular graphics 1996, 14, 33-38.
    
This post is licensed under CC BY 4.0 by the author.